Vehicle Dynamics를 이용한 차량 위치 추정, Pure pursuit을 이용한 Steering Control

김은찬 이민성 권나현

CONTENTS

CAR MAKER

Vehicle Localization

- Kinematic Model
- Dynamic Model

Extended Kalman Filter

- Kinematic Model with EKF
- Dynamic Model with EKF
- Integration Model

Steering Control

- Pure pursuit
- Video
- Conclusion

1. CAR MAKER

Road Sensors

Override interna	Illy computed v	ehicle body p	roportioning				
	x [m]	y [m]	z [m]	Mass (kg)	lxx [kgm²]	lyy [kgm²]	lzz [kgm²]
Vehicle Body	2.43	0	0.60	1301	470	1500	1600
Vehicle Body B	2.15	0.0	0.58	650.5	180.0	900.0	900.0
Joint A - B	2.43	0	0.60				
	Calculated v	ehicle overall	mass [kg]	1463.00			Info

2. Vehicle Localization

2-1) Kinematic Model

$$\begin{bmatrix} \dot{X} \\ \dot{Y} \\ \dot{\Psi} \end{bmatrix} = \begin{bmatrix} V_G \cos(\psi + \beta) \\ V_G \sin(\psi + \beta) \\ V_G \cos(\beta) \tan(\delta) / (l_f + l_r) \end{bmatrix}$$

where

$$\beta = \tan^{-1}\left(\frac{l_r \tan(\delta)}{l_f + l_r}\right)$$

2-2) Dynamic Model

2-3) Analysis

Kinematic Model is reasonable for low-speed vehicle motion.

2-3) Analysis

Dynamic Model is reasonable for high-speed vehicle motion.

3. Extended Kalman Filter

Linear System

Kalman Filter

Extended Kalman Filter

Nonlinear System

3-1) Kinematic Model with EKF

3-1) Kinematic Model with EKF

3-2) Dynamic Model with EKF

3-2) Dynamic Model with EKF

3-3) Analysis

Low speed (20km/h)

The error is noticeably reduced. But Kinematic Model is reasonable for low-speed vehicle motion.

3-3) Analysis

High speed (80km/h)

The error is noticeably reduced. But Dynamic Model is reasonable for high-speed vehicle motion.

Kinematic + Dynamic (Velocity)

Kinematic + Dynamic (Velocity)

Analysis in variable speed

Integration Model according to velocity is reasonable for curve.

Kinematic + Dynamic (Slip)

-0.03 ~ 0.03

Kinematic + Dynamic (Slip)

Analysis in variable speed

Integration Model according to slip is reasonable for straight road.

Kinematic + Dynamic (Velocity + Slip)

Kinematic + Dynamic (Velocity 7 + Slip 3) Analysis in variable speed

4. Steering Control

Pure pursuit

4. Steering Control

Pure pursuit

4. Steering Control

Look-ahead distance control

if v <= 30/3.6
sensor = 1;
elseif v <= 40/3.6
sensor = 2;
elseif v <= 60/3.6
sensor = 3;
elseif v <= 80/3.6
sensor = 4;
elseif v <= 100/3.6
sensor = 5;
else
sensor = 6;
end
•

Carmaker model

Integration Model

4-2) Analysis & Conclusion

Error Analysis

Better steering control than the original model

Jarrod M. Snider. Automatic Steering Methods for Autonomous Automobile Path Tracking. Carnegie Mellon University, 2009.

Kichun Jo. Integration of Multiple Vehicle Models with an IMM Filter for Vehicle Localization. IEEE Intelligent Vehicles Symposium, 2010.

https://en.wikipedia.org/wiki/Kalman_filter

#