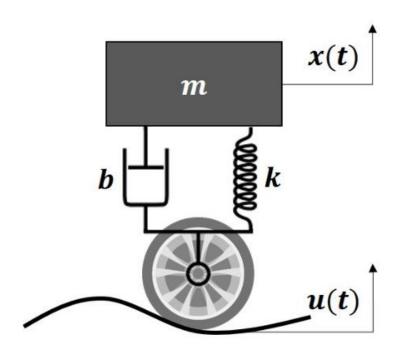
차량의 승차감을 고려한 서스펜션의 C, K값 최적화

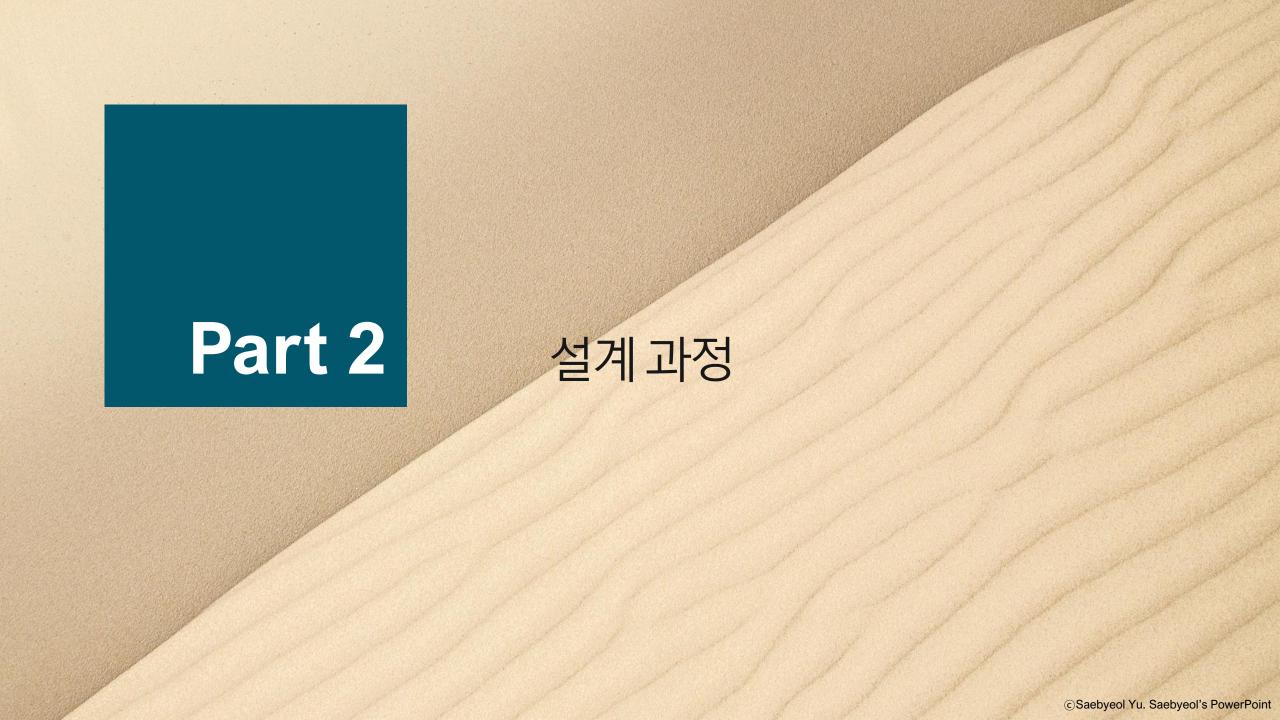
2018016053 우제경

Part 1, 서스펜션의 역할

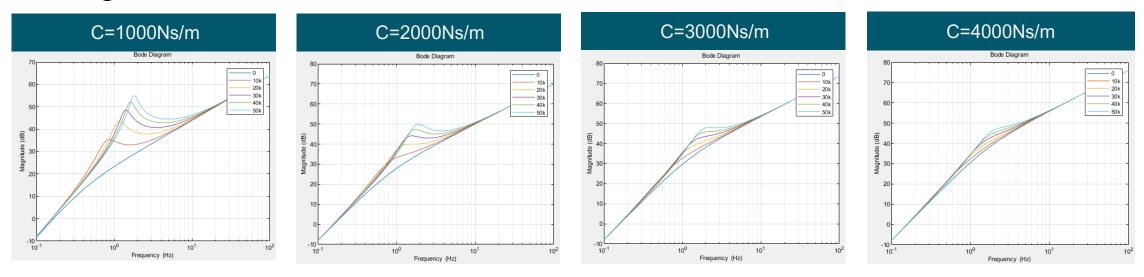


차체 무게를 지지

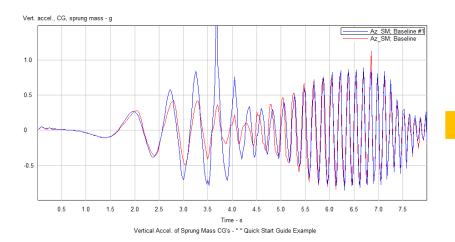
2 타이어 접지면에서의 충격을 흡수


3 핸들링의 안정성을 높임

Part 1, 1 DOF Quarter-Car Model


$$\begin{aligned}
m\ddot{x} &= -K(x - u) - C(\dot{x} - \dot{u}) \\
G(s) &= \frac{X}{U} = \frac{Cs + K}{ms^2 + Cs + K}
\end{aligned}$$

$$\begin{split} \left|\frac{\ddot{X}}{U}\right| &= \omega^2 \left|\frac{X}{U}\right| \\ &= \omega^2 \sqrt{\frac{K^2 + C^2 \omega^2}{(K - m\omega^2)^2 + C^2 \omega^2}} = \sqrt{\frac{w^4 (2\zeta \omega_n \omega)^2 + \omega^4 \omega_n^4}{(\omega_n^2 - \omega^2)^2 + (2\zeta \omega_n \omega)^2}} \end{split}$$



Part 2, C와 K값의 따른 Bode Plot

M=400Kg일 때, C와 K에 따른 그래프 변화

K가 커질수록 공명이 커지고, C가 커질수록 w가 Stationary Point보다 클 때, Magnitude가 커진다.

CarSim에서 C-Cl ass Hatchback 선택 K값 20kN/m, 80kN/m에 따른 수직방향 가속도 비교

Part 2, Resonance Frequency 구하기

$$\begin{split} \left| \frac{\ddot{X}}{U} \right| &= \omega^2 \sqrt{\frac{K^2 + C^2 \omega^2}{(K - m \omega^2)^2 + C^2 \omega^2}} = \sqrt{\frac{\omega^4 (2 \zeta \omega_n \omega)^2 + \omega^4 \omega_n^4}{(\omega_n^2 - \omega^2)^2 + (2 \zeta \omega_n \omega)^2}} \\ \\ \frac{d}{d\omega} \left| \frac{\ddot{X}}{U} \right| &= \frac{1}{2} \left(\frac{\omega^4 (2 \zeta \omega_n \omega)^2 + \omega^4 \omega_n^4}{(\omega_n^2 - \omega^2)^2 + (2 \zeta \omega_n \omega)^2} \right)^{-\frac{1}{2}} \frac{d}{d\omega} \left(\frac{\omega^4 (2 \zeta \omega_n \omega)^2 + \omega^4 \omega_n^4}{(\omega_n^2 - \omega^2)^2 + (2 \zeta \omega_n \omega)^2} \right) \\ \\ &= \frac{1}{2} \left(\frac{\omega^4 (2 \zeta \omega_n \omega)^2 + \omega^4 \omega_n^4}{(\omega_n^2 - \omega^2)^2 + (2 \zeta \omega_n \omega)^2} \right)^{-\frac{1}{2}} \left(\frac{4 \omega_n^2 \omega^3 (2 \zeta^2 \omega^6 + (16 \zeta^4 \omega_n^2 - 8 \zeta^2 \omega_n^2) \omega^4 + (8 \zeta^2 \omega_n^4 - \omega_n^4) \omega^2 + \omega_n^6}{((\omega_n^2 - \omega^2)^2 + (2 \zeta \omega_n \omega)^2)^2} \right) \end{split}$$

$$2\zeta^{2}W^{3} + (16\zeta^{4}\omega_{n}^{2} - 8\zeta^{2}\omega_{n}^{2})W^{2} + (8\zeta^{2}\omega_{n}^{4} - \omega_{n}^{4})W^{2} + \omega_{n}^{6} = 0$$

Part 2, Resonance Frequency 구하기

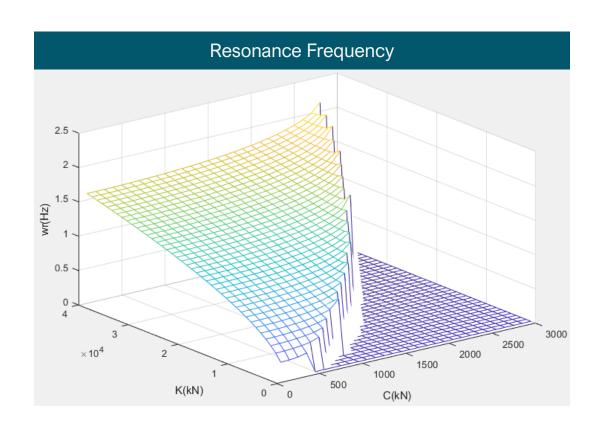
3차 방정식 해 구하기

$$ax^3 + bx^2 + cx + d = 0$$

$$\begin{split} x_1 &= -\frac{b}{3a} \\ &-\frac{1}{3a}\sqrt[3]{\frac{2b^3 - 9abc + 27a^2d + \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3}}{2}} \\ &-\frac{1}{3a}\sqrt[3]{\frac{2b^3 - 9abc + 27a^2d - \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3}}{2}} \\ x_2 &= -\frac{b}{3a} \\ &+\frac{1 + i\sqrt{3}}{6a}\sqrt[3]{\frac{2b^3 - 9abc + 27a^2d + \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3}}{2}} \\ &+\frac{1 - i\sqrt{3}}{6a}\sqrt[3]{\frac{2b^3 - 9abc + 27a^2d - \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3}}{2}} \\ x_3 &= -\frac{b}{3a} \\ &+\frac{1 - i\sqrt{3}}{6a}\sqrt[3]{\frac{2b^3 - 9abc + 27a^2d + \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3}}{2}} \\ &+\frac{1 + i\sqrt{3}}{6a}\sqrt[3]{\frac{2b^3 - 9abc + 27a^2d - \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3}}{2}} \\ &+\frac{1 + i\sqrt{3}}{6a}\sqrt[3]{\frac{2b^3 - 9abc + 27a^2d - \sqrt{(2b^3 - 9abc + 27a^2d)^2 - 4(b^2 - 3ac)^3}}{2}} \end{split}$$

$$2\zeta^{2}W^{3} + (16\zeta^{4}\omega_{n}^{2} - 8\zeta^{2}\omega_{n}^{2})W^{2} + (8\zeta^{2}\omega_{n}^{4} - \omega_{n}^{4})W^{2} + \omega_{n}^{6} = 0$$

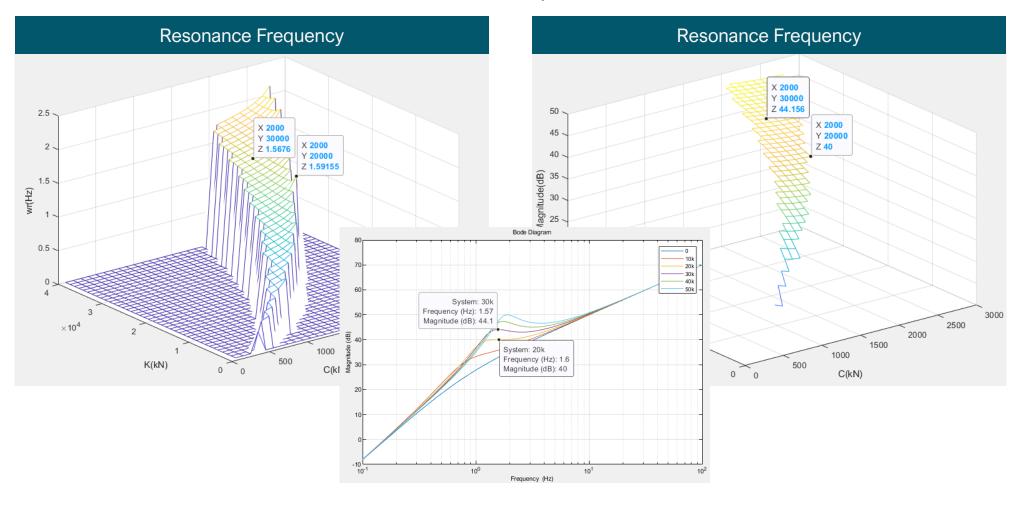
$$a = 2\zeta^{2}$$

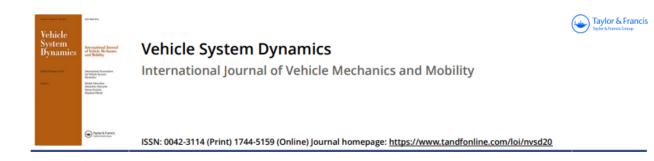

$$b = 16\zeta^{4}\omega_{n}^{2} - 8\zeta^{2}\omega_{n}^{2}$$

$$c = 8\zeta^{2}\omega_{n}^{4} - \omega_{n}^{4}$$

$$d = \omega_{n}^{6}$$

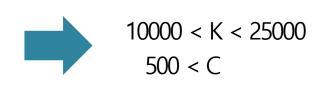
W의 근 중 양의 실수에서 작은 값을 선택


Part 2, Resonance Frequency & Magnitude

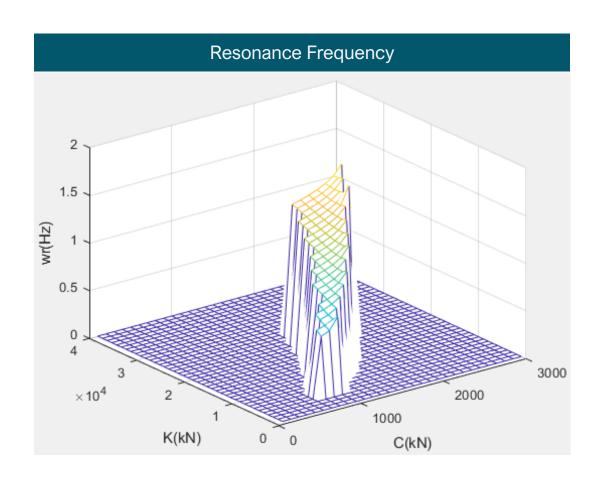


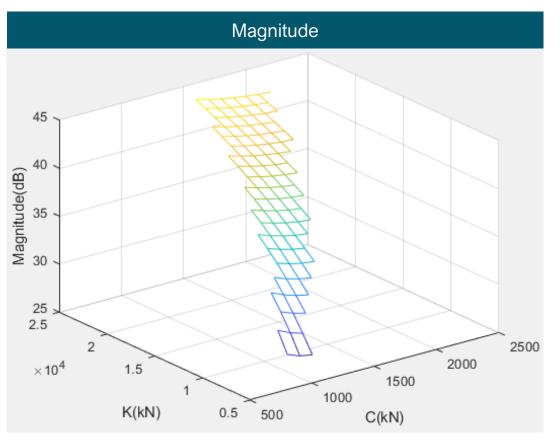
Part 2, Jeta를 고려한 Resonance Frequency & Magnitude

실제 차량에서는 $0.25 \le \zeta \le 0.4$ 로 설계 $(\zeta = \frac{C}{2\sqrt{mK}})$

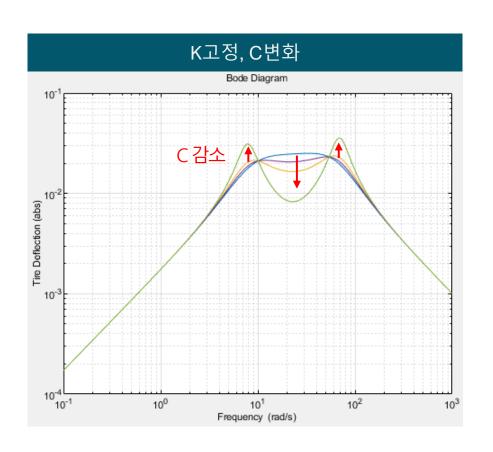


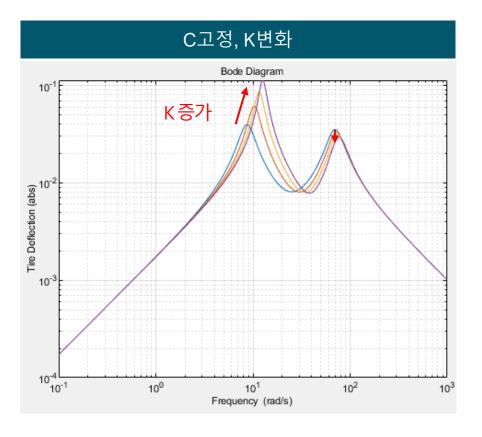
Part 2, K, C 경계조건




Table 2. Suspension parameters and optimal normalised damping for various vehicle types.[7,8]

Vehicle type		<i>m</i> ս (kg)	<i>m</i> s (kg)	<i>k</i> ₅ (N/mm)	<i>k_t</i> (N/mm)	c _s bump (kNs/m)	c₅ rebound (kNs/m)	
С	Front	46	323	12.80	170	1.0	2.0	
Coupe	Rear	60	264	13.80	150	0.8	1.4	
D	Front	53	380	12.95	180	1.2	1.8	
Saloon	Rear	44	337	14.72	170	1.0	1.8	
F	Front	45	400	20.00	250	4.1	5.8	
Sports	Rear	50	400	20.00	250	4.1	5.8	
G	Front	23	125	300	228	6.0	10.0	
F1car	Rear	30	188	200	228	11.0	15.0	
Н	Front	35	209	230	375	8.0	12.0	
C1 prototype	Rear	45	301	400	398	12.0	16.0	
Truck	Front	177	1872	232	1030	26.2	-	
	Rear	277	1411	500	2060	34.7		




Part 2, **K, C** 경계조건 적용

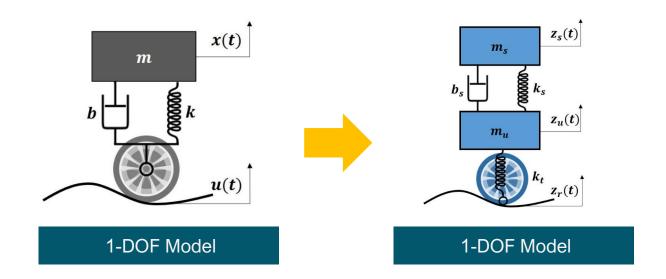
Part 2, 2-DOF 핸들링 관점에서 C, K 따른 Bode Plot

Part 3, 1. KKT 필요조건

1 라그랑지 함수 만들기

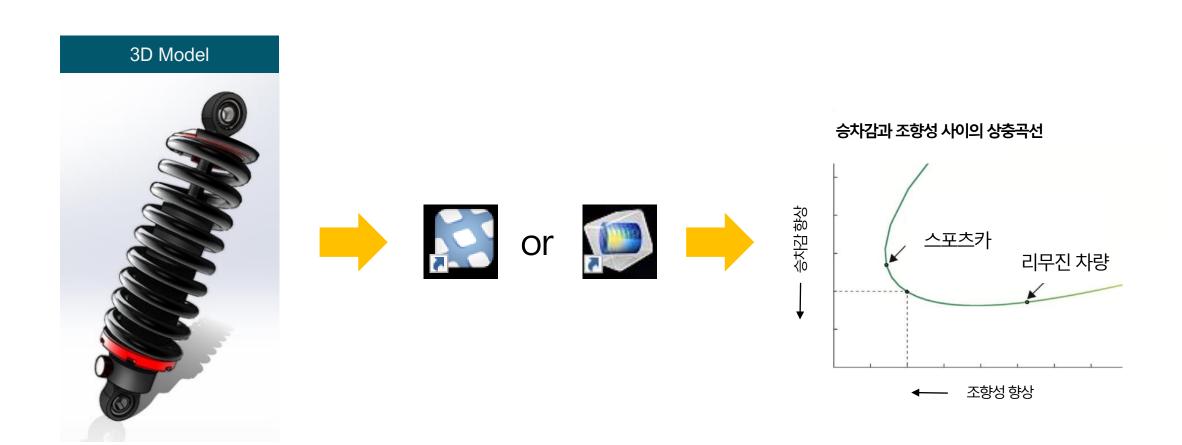
$$2\zeta^{2}W^{3} + (16\zeta^{4}\omega_{n}^{2} - 8\zeta^{2}\omega_{n}^{2})W^{2} + (8\zeta^{2}\omega_{n}^{4} - \omega_{n}^{4})W^{2} + \omega_{n}^{6} = 0$$

목적함수를 w에 대한 식으로 나타내고, 부등호제약조건을 적용한다.


2 경사도 벡터 조건

$$\frac{\partial L}{\partial v_i} = 0$$
 , $\frac{\partial L}{\partial u_j} = 0$

3 전환 조건


$$\frac{\partial L}{\partial s_j} = 0$$

Part 3, 2. 2 DOF Model

$$\begin{split} m_{s}\ddot{z}_{s} &= -k_{s}\left(z_{s} - z_{u}\right) - b_{s}\left(\dot{z}_{s} - \dot{z}_{u}\right) \\ m_{s}\ddot{z}_{u} &= k_{s}\left(z_{s} - z_{u}\right) + b_{s}\left(\dot{z}_{s} - \dot{z}_{u}\right) + k_{t}\left(z_{r} - z_{u}\right) \\ x_{1} &= z_{s} - z_{u} \\ x_{2} &= \dot{z}_{s} \\ x_{3} &= z_{u} - z_{r} \end{split} \qquad \text{State Equation}$$

Part 3, 3. 해석 프로그램 이용

감사합니다