

Automobile Body Structure Project: Future EV body structure

2016201432 Minsik Seo

Outline

- Motivation
- Process

Packaging layout Topology optimization

- Result
- Consideration

- Much more variety of structure configuration for future EV
- Change of regulation and perception

 사이드미러 없는 자동차, 국토교통부 개정안 입법 예고…이르면 내년부터 가능

 圖 서울경제 [2016.11.08] 네이버뉴스 [C]

 ■ 이르면 내년부터 사이드미러 없는 자동… 중부일보 [2016.11.08]

 ■ 사이드미러 없는 車, 내년부터 나온다 조선일보 [2016.11.08] 네이버뉴스

 ■ 사이드미러 없는 車, 내년부터 하용 동아일보 [2016.11.08] 네이버뉴스

 ■ 사이드미러 없는 車, 내년부터 하용 동아일보 [2016.11.08] 네이버뉴스

 ■ 사이드미러 없는 車, 내년부터 하용 동아일보 [2016.11.08] 네이버뉴스

 ■ 사이드미러 없는 車, 내년부터 하용 동아일보 [2016.11.08] 네이버뉴스

 ■ 차이드미러 없는 車, 내년부터 하용 동아일보 [2016.11.08] 네이버뉴스

 \rightarrow Inspired by BladeGlider of Nissan

Motivation

Benchmark dimension

Nissan BladeGlider key statistics	
Top speed	>190km/h (115mph)*
Acceleration 0-100km/h (62mph)	< 5 seconds*
Power	200kW (268 hp)
Torque	707Nm
Weight	1300kg
Length	4300mm
Width	1850mm
Height	1300mm
Wheelbase	2800mm

Process

Package layout

SAE Surface vehicle recommended practice

- Describing and Measuring the Driver's Field of View, J1050
- Motor Vehicle Driver's Eye Locations, J941

Process

Topology optimization(bending)

Topology optimization(torsion)

Torsional stiffness 20 kN/mm

Process

Topology optimization(full frontal)

Original target (USNCAP)

- Foot well intrusion: < 100 mm
- Peak Pulse: < 35 G's after 30 ms

Topology optimization purpose

- To find efficient distribution of material
- By eliminating low strain energy element

€

Minimize compliance problem

ISSUES

- 1. How to solve non-linear optimization
- 2. How to treat unconstrained analysis

Topology optimization(full frontal)

Parts	Weight [kg/EA]
Front tire	30
Rear tire	40
Door	16
Battery	200
Powertrain	50

Inertia relief without SPC

Static analysis with SPC

Liao, L. (2011, April). A study of inertia relief analysis. In Pro- ceedings of the 52nd AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado: AIAA (pp. 1-10).

Bending + torsional stiffness and full frontal (Optistruct)

Bending + torsional stiffness and full frontal (Optistruct)

Design domain dependency