

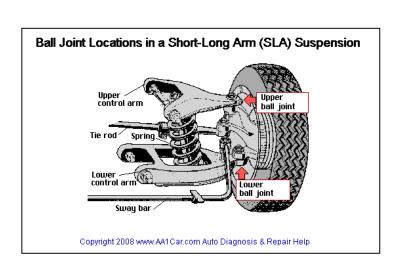
SLA suspension design optimization

Student No.2015121840 Won Seok Song

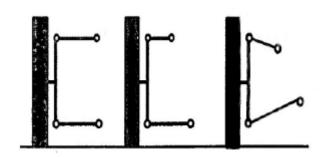
CDL Computationa Design Lab

Outline

- Motivation
- Design process
- Simulate system model
- Design optimization
- Conclusion

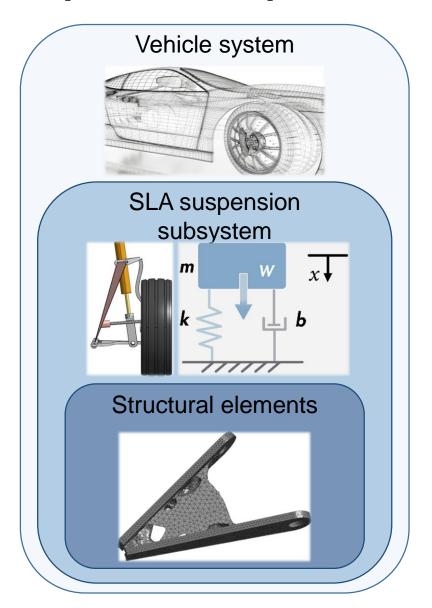


Motivation - SLA Suspension


Suspension

Macpherson Double wishbone

Double wisebone suspension designs



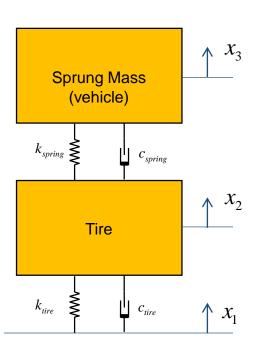
Short and Long arm suspension

The unequal length double wishbone suspension. The unequal arm length causes a change in the camber of the vehicle as it rolls, which helps to keep the contact patch square on the ground, increasing the ultimate cornering capacity of the vehicle.

Suspension requirement

Quarter vehicle model (weight, suspension type)

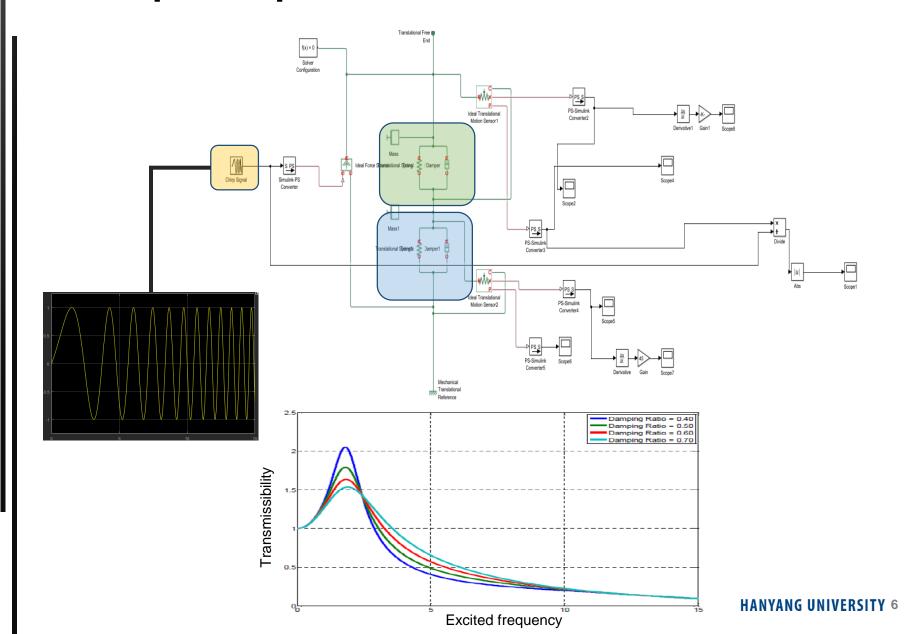
Suspension simulation model


Suspension component model

Suspension

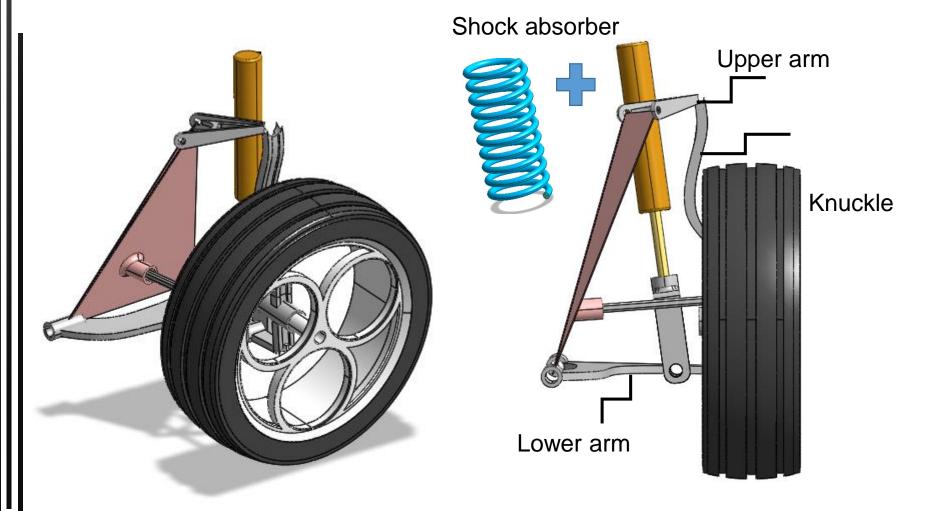
System equation

$$\begin{split} m_{tire}\ddot{x}_2 &= k_{tire}\left(x_1 - x_2\right) + c_{tire}\left(\dot{x}_1 - \dot{x}_2\right) - k_{spring}\left(x_2 - x_3\right) + c_{spring}\left(\dot{x}_2 - \dot{x}_3\right) \\ m_{car}\ddot{x}_3 &= k_{spring}\left(\ddot{x}_2 - \ddot{x}_3\right) + c_{spring}\left(\dot{x}_2 - \dot{x}_3\right) \end{split}$$



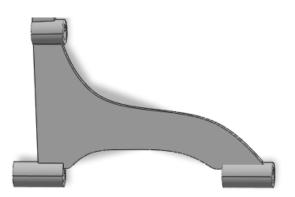
Suspension Parameters of Quarter Car Model

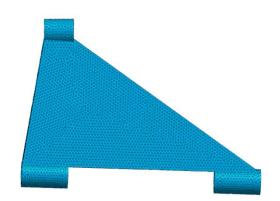
System Parameters	Value
Sprung Mass	450 Kg
Upsprung Mass	45 Kg
Suspension Stiffness	22000 N/m
Passive Suspension Damping	2300 Ns/m
Tire Stiffness	176000 N/m
Tire Damping Coefficient	230 Ns/m

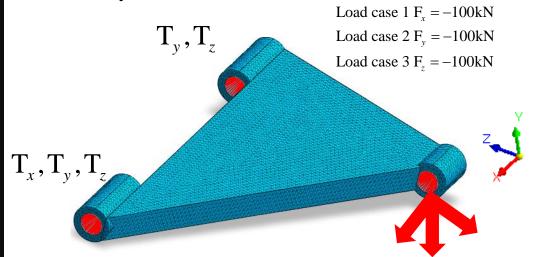


Simscape Suspension model

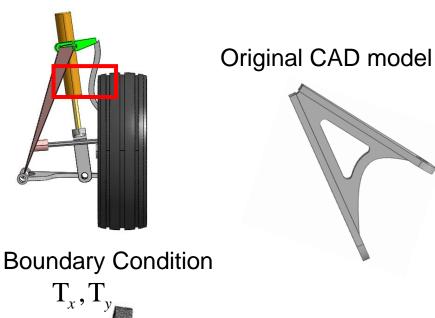
Suspension cad model


Reference – grabcad

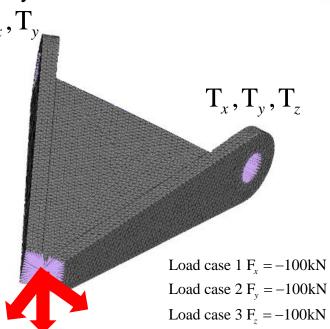

Lower control arm


Original cad model

Modified model for topology optimization

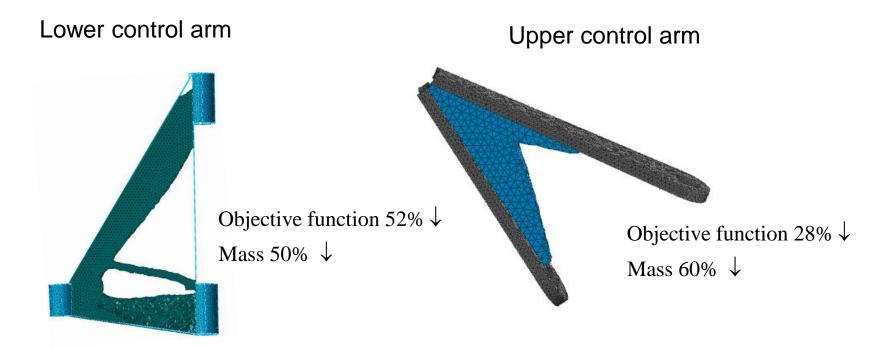

Boundary Condition

Optimum solution Minimize Compliance Subject to Volume fraction 50%

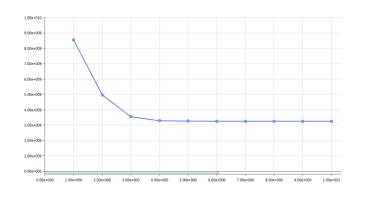


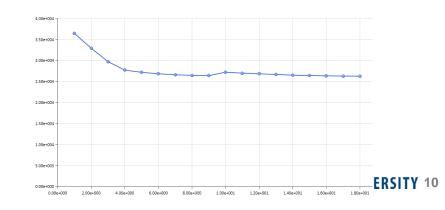
Upper control arm

Modified model for topology optimization

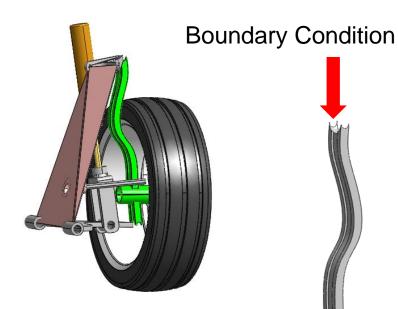


Optimum solution
Minimize Compliance
Subject to Volume fraction 40%





Optimization results


History of topology optimization process

Knuckle Buckling

 T_x, T_y, T_z

Buckling critical load

$$P_{CR} = \lambda_1 \times P = 41395 \times 1N$$

 $=41395N \gg 4900N (500kg \times 9.8 \text{m/s}^2)$

MODE NUMBER	EIGENVALUE	RADIANS	CYCLES	PERIOD	GENERALIZED MASS	GENERALIZED STIFFNESS	ORTHOGONALITY LOSS	ERROR MEASURE
1	4.139516e+004	2.034580e+002	3.238135e+001	3.088197e-002	2.856865e-003	1.182604e+002	0.000000e+000	8.110991e-007
2	4.457239e+005	6.676255e+002	1.062559e+002	9.411242e-003	6.976600e-003	3.109637e+003	4.365019e-008	5.805730e-007
3	9.826840e+005	9.913042e+002	1.577710e+002	6.338300e-003	1.864009e-002	1.831732e+004	3.006508e-008	1.008825e-006
4	2.136294e+006	1.461607e+003	2.326219e+002	4.298821e-003	4.287182e-002	9.158681e+004	5.562087e-009	1.093380e-006
5	3.233952e+006	1.798319e+003	2.862114e+002	3.493921e-003	5.734149e-002	1.854396e+005	2.731026e-009	1.226047e-006
6	4.283163e+006	2.069580e+003	3.293840e+002	3.035970e-003	2.425383e-001	1.038831e+006	4.226700e-010	1.045108e-004
7	4.334293e+006	2.081896e+003	3.313441e+002	3.018011e-003	4.517459e-001	1.957999e+006	9.896330e-011	1.857164e-003
8	4.419908e+006	2.102358e+003	3.346006e+002	2.988638e-003	4.824325e-001	2.132308e+006	1.063839e-010	1.699417e-002
9	4.439901e+006	2.107107e+003	3.353565e+002	2.981901e-003	1.353718e-001	6.010375e+005	7.687307e-011	2.506434e-003
10	4.456696e+006	2.111089e+003	3.359902e+002	2.976277e-003	3.483564e-001	1.552518e+006	1.267671e-009	5.083981e-003

Conclusion

- 2-DOF quarter car suspension simulation is applied. But It has difficult to use analyzed data on 3d FEM model.
- Multi-objective topology optimization is used on Suspension components.
- Buckling analysis is applied on knuckle component.

Reference

International Journal of Scientific Research and Management Studies (IJSRMS) ISSN: 23493771 Volume 1 Issue 11, pg: 363-371

MASS REDUCTION FOR STEERING KNUCKLE ARM IN A SUSPENSION SYSTEM THROUGH TOPOLOGY OPTIMIZATION IN CAE

¹Kamlesh Lalasaheb Chavan, ²S R Deodas, S.S.Kulkarni³ ¹ME (Design Engg), D.Y. Patil College of Engg., Akurdi, Pune, India ²Assistance Professor, BE (Mechanical), ME (Heat Power), PG coordinator (Heat Power Department) D Y Patil college of engineering, Akurdi, Pune, India

³Director, Able Technologies (I) Pvt. Ltd., Pune, India Imperial Journal of Interdisciplinary Research (IJIR)

Vol-2, Issue-10, 2016

ISSN: 2454-1362, http://www.onlinejournal.in

Static Analysis and Topology Optimization of Upper Control Arm

Kaustubh V. Kulkarni¹, Prof. Suhas Shinde² & Prof. S.S Kelkar³ ¹Student, ME Design, JSCOE, Pune, India ^{2,3}Prof. JSCOE, Pune, India

> International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Finite Element Analysis and Topology Optimization of Lower Arm of Double Wishbone Suspensionusing RADIOSS and Optistruct

Vinayak Kulkarni¹, Anil Jadhav², P. Basker³

1. 2PG Scholar, M.Tech (Automotive Engineering), School of Mechanical and Building Sciences, VIT University, Vellore- Tamilnadu India-632014

South Asian Journal of Engineering and Technology Vol.2, No.23 (2016) 171 - 177 SAJET

Analysis of Vehicle Suspension System Subjected to forced vibration using MAT LAB/Simulink

P.Mohan^a, K.V. Poornachandran^a, P.Pravinkumar^b, M.Magudeswaran^c, M.Mohanraj^c

> Department of Mechanical Engineering, Tamilnadu College of Engineering, Coimbatore, ^b Department of Mechanical Engineering, Sasurie College of Engineering, Vijayamangalam ^cDepartment of Mechanical Engineering, Nandha College of Technology, Erode, mohanpmech@gmail.com