

Topology Optimization of EV Underbody Considering Unpaved Road Vibration

2016.12.13 Jungno Yoon

Outline

- Motivation
- Setup Road Scenario
- Specification of EV Underbody Model
- Topology Optimization (Eigenvalue Maximization)
- Result & Conclusion

Motivation

- 1) Still lots of roads over the world are 'Unpaved'
 - EV should be considered also on the unpaved condition

<The percentage of paved roads 2015>

http://www.dangerousroads.org/rankings23/4941-countries-with-lowest-of-paved-roads.html

2) Resonant frequency in EV will get lower than conventional vehicle- Influence of EV Battery, weight is 'Increased'

Renault Samsung Motors Official Site

EV vehicles are more exposed by Resonance condition !

Motivation

- 3) Perform <u>'Maximum Eigenvalue Topology Optimization' (EV Underbody</u>)
 - By the same mass -> get the most optimized design

- 4) Optimization Target Vehicle -> 'Body-on-Frame EV'
 - Optimizing Area : EV Underbody

Setup Road Scenario

Setup Road Scenario

Extracting Road Profile

- 1) Extract Unpaved Road Surface 'Profile'
 - Make a different scenario based on road condition

Publication 2000:31E

Whole-body vibration when riding on rough roads

4.4 Analysis of road roughness

The deviation of the road surface from a horizontal plane can be described by the wavelengths and amplitudes of the roughness, see Figure 10. The very shortest roughness wavelengths are classed as *microtexture*, which is determined by the properties of the aggregate and binder in the surface. Somewhat longer wavelengths are classed as *marrotexture*, which is determined by such things as the shape of the aggregate and the particle size distribution. Longwave deviations are quite simply designated as *roughness* [2], often caused by more or less extensive settlement, frost heave or ice lenses in or under the road structure in the winter.

Figure 10 Wavelength (λ) and amplitude (A). Above at corrugation, below at a pothole.

But, the math formulations are too simple to setup various scenario
& Explanation about considering friction is ambiguous

Substituent Method

Extracting Road Profile

<1> Choose the road type

File Edit Datasets Libraries Go To View Tools Help ? Road126 6 8 3 × 0 12-12-2016 01:35 Lib Too Animator Support The road data are used to create up to 25 sets of shapes for the animator, each corresponding to one lane along a length of the road. The shapes are generated from the data in the four geometry links plus the shape definitions from the link below. Update Shapes Off-Road Height of vehicle shadows: -50 Other sets of shapes associated with this road Misc. animator set: Animator Group Sky for Light Grass CarSim Bun Control: \$\$ test #1 E Models: Simulink: \$\$ test.sim.sim2.expor Animator: Camera Setup: 13 deg. Azimuth, Vehicle: Assembly: C-Class, Hatchback 201 Geometry Friction Procedures: \$\$ chassis Friction: Mu via S-L grid Centerline geometry: Horizontal (X-Y) table Straight 0.75 Surface coefficient for tire rolling Centerline elevation: Z vs S resistance (typical value = 1.0): Flat Preview the Boad Positions of road reference camera points Off-Boad Terrain Front: 0.5 m Rear: 0.5 In III - F View with Animator Off-center elevation 2 Rear View , Road Ref. (Frt. Facing) Expand Collapse Refresh Reset

RicarSim822 Data1 Road: 3D Surface (All Properties): { Ride Roads } Off-Road 20 deg. [L]

<2> Specify road characteristic in detail (Friction etc.)

<3> Export Output variables (Wheel displacement) <4> Send to Simulink , Save data HANYANG UNIVERSITY 7

2) Extracting Procedure

Setup Road Scenario

Extracting Road Profile

<1> Bounce Sine Sweep

<2> Chassis Twist Road

3) Road Scenario

Setup Road Scenario

Extracting Road Profile

4) Road Analysis

Displacement difference by Friction? Set Mu = 0.7, Mu = 0.2

Friction value is working as variable at Scenario <2>, <3>

IVERSITY

Extracting Road Profile

f (Hz)

4) Road Analysis

- Perform Road's Fast-Fourier Transform (FFT) Analysis
- To compare road's frequency with that of EV Model.
- <1> Bounce Sine Sweep <2>Chassis Twist mu = 0.2 <3> Chassis Twist mu = 0.7 Single-Sided Amplitude Spectrum of X(t) Single-Sided Amplitude Spectrum of X(t) Single-Sided Amplitude Spectrum of X(t) 0.9 0.9 0.9 0.8 0.8 0.8 X: 11 0.7 0.7 0.7 Y: 0.6399 0.6 0.6 0.6 10.0 (j) Ld P1(f) 0.5 0.4 X: 12 0.4 0.4 Y: 0.3033 0.3 0.3 0.3 X: 1 0.2 Y: 0.15 0.2 0.2 0.1 0.1 0.1 0 50 100 150 0 0 50 100 150 0 f (Hz) 0 50 100 150 f (Hz) f (Hz) <4> Off-road mu = 0.2 <5> Off-road mu = 0.7 Single-Sided Amplitude Spectrum of X(t) Single-Sided Amplitude Spectrum of X(t) 0.9 0.9 0.8 0.8 Unpaved Road prevail frequency 0.7 0.7 0.6 0.6 -> 11Hz ~ 16Hz !! (J) 14(1) (J) 14 0.5 X: 13 0.4 0.4 Y: 0.3126 X: 16 0.3 Y: 0.252 0.3 0.2 0.2 0.1 0.1 HANYANG UNIVERSITY 0 0 50 100 15 0 50 100 150

f (Hz)

Benchmarked Underbody Model -> Mercedes – Benz G Class

Dimensions

76.9'

More Exterior Dimensions

Overall height	76.9 in
Overall length	187.6 in (including spare tire, excluding brush guard)
Overall width	80.9 in(with mirrors)
Coefficient of drag	TBD
Wheelbase	112.2 in
Curb weight	5,724 lbs

Modeling Tool -> Autodesk Inventor 2016

Modal Analysis (Real Model)

Topology Optimization (Eigenvalue Maximization)

CDI Topology Optimization (Eigenvalue Maximization)

Recall
$$\frac{\sqrt{\lambda}}{2\pi} = f(Hz)$$
 (eigenvalue property)

석 제어	
최적화 제조조건 접촉 파라미터	
기본 최적화 변수	
체커보드 저감	크게 👻
수렴기준 / 오류오차	
📝 목적함수 오차	0.005
🔲 설계변수 오차	0.01
중간 결과 출력 방법	
마지막 반복	▼ N 1
절계 세약소건	
폭표 부미(%)	40
□ 우피게산지 비질게세트 포함	
고유벡터	
목표 타입	가중평균 최대값 🔻
💹 MAC값을 활용한 모드 추적	
대상 모드 개수	1
모드 가중 패턴	상수 🔹

Computational Design

Gray : Non - Design Domain Blue : Design Domain

Eigenvalue Maximization

CDL Topology Optimization (Eigenvalue Maximization)

Maximization Completed !!

HANYANG UNIVERSITY

Computational Design

Conclusion

Result & Conclusion

20.13Hz is bigger than 11Hz~16Hz (Unpaved Road Freq) - Adequate design for avoiding resonance !!

Result & Conclusion

Limitation

- Model is not sophisticated (We need to input more condition)
- Investigated in only 3 road Scenario
- In reality, Vehicle Natural frequency should be analyzed in comprehensive point.
- Battery Weight and EV body-on-frame dimension could be quite different

Thank you for your attention

