요 지

척추 디스크 환자의 통증을 덜어주기 위한 척추 임플란트는 크게 인공척추 디스크(Artificial Intervertabral Disc: AID)와 후방 평형 장치(Posterior Stabilization Device: PSD)로 구분되며, 비교적 간단한 구조와 인체 시술시 편이성 등의 장점으로 인하여 PSD 가 보편적으로 사용되고 있고 연구도 활발 히 진행되고 있다. 그러나, 다양한 종류의 척추 임플란트가 사용되고 개발중 임에도 불구하고 임플란트의 인체 삽입 후 척추 거동을 예측하는 것은 쉽지 않다. 대표적 예측 방법인 시체 및 생체 실험은 극히 제한되어 있으며, 임상 실험 또한 많은 시간과 비용이 요구되는 등 여러 제약조건으로 연구에 어려 움이 있다. 이를 극복하기 위한 하나의 방안으로 척추 유한요소모델(Finite Element Model)을 활용한 척추용 임플란트에 관한 연구의 필요성이 꾸준히 증대되어 왔다.

본 논문에서는 비선형 해석을 수행하여 인체의 척추와 동일한 거동을 나타 내는 척추 유한요소모델을 생성하고, 임플란트를 삽입한 유한요소 모델을 생 성하여 임플란트의 삽입효과를 예측하는 것을 그 목적으로 한다. 이를 위하 여 우선 CT이미지를 기반으로 생성한 요추(L2~L5)의 CAD 모델을 바탕으 로 육면체 요소(Hexahedron element)의 척추 유한요소모델을 생성하였다. 또한, 상용 유한요소해석 프로그램인 ABAQUS를 사용하여 실제 시체실험과 동일한 전방 굽힘, 후방 굽힘, 좌우 굽힘, 회전 등 각각의 하중/경계조건으로

비선형 유한요소 해석을 수행한 후 실제 시체 실험 데이터로 검증된 척추 유 한요소모델을 생성하였다. 또한, 퇴행성 척추 유한요소모델을 생성하여 동일 조건에 대해 정상상태 척추 모델과 비교하여 발생할 수 있는 문제점을 고찰 하기 위하여 속질핵(nucleus pulposus)이 기능을 하지 못하고 섬유륜 (annulus fibrosus)을 뚫고 흘러나와 충격흡수 불능 및 내부 응력 불균형 등 을 발생시키는 퇴행성 척추를 모델링하였다. 그리고 생성된 퇴행성 척추 모 델에 실제 인체에 시술되고 있는 척추 임플란트인 PSD 를 삽입한 척추 유한 요소모델을 생성하고 해석결과를 정상상태 척추 모델과 비교함으로써 척추 임플란트 삽입에 의해 개선될 수 있는 삽입 효과 및 성능을 예측하였다.

37 구의 시체실험 결과로 검증된 척추 유한요소모델은 척추뼈간 상대회전 각(ROM)이 모두 시체실험 결과의 표준 편차 이내에 있도록 하였으며, 퇴행 성 척추 유한요소모델은 속질핵이 본래 기능을 잃은 상태를 묘사한 속질핵을 제거한 유한요소모델을 생성한 후 정상상태의 척추 모델과 비교, 고찰하였다.

또한, 퇴행성 척추 유한요소모델에 PSD 를 삽입한 유한요소모델을 생성하 고 비선형 해석을 수행하여 ROM은 전방 굽힙이 83.1%, 후방 굽힘이 60.9%, 척추 디스크 압력은 66.1% 각각 감소한 결과를 확인할 수 있었으며, 척추의 활동성을 다소 제약하는 비교적 삽입효과가 큰 척추 임플란트임을 예측하였 다. 이와 같이, 본 연구를 통해 생성된 척추 유한요소모델은 척추 임플란트의 삽입효과를 예측하는데 큰 역할을 할 뿐만 아니라, 척추와 관련된 생체역학 의 다른 주제에 대해서도 활용될 수 있어 그 효용가치는 클 것으로 기대된다. 주요용어 : 척추, 요추, 척추 임플란트, 척추 유한요소모델

